
Register Allocation by Graph Coloring: A Review

Frank Mueller

Department of Computer Science, B-173

Florida State University

Tallahassee, Florida 32306-4019

phone: (904) 644-3441, e-mail: mueller@cs.fsu.edu

Fall 1992, 1st revision 3/26/93

Copyright

c


1992 Florida State University. All rights reserved.

1 Introduction

The problem of register allocation for code generation can be described as follows: Given

a set of (hardware) registers, what is the most e�cient mapping of registers to program

variables in terms of execution time of the program. But let us �rst de�ne some terms

to describe the problem more formally.

A variable is de�ned at a point in a program when a value is assigned to it. A variable

is used at a point in a program when its value is referenced in an expression. A variable

is said to be live at a point if it has been de�ned earlier and will be used later. The

live range of a variable is the execution range (a set of adjacent vertices of the control


ow graph of the program) between de�nitions and uses of a variable. Two variables

are simultaneously live if and only if both are live for the a vertex v of the control 
ow

graph.

A proper register allocation is a mapping from the variable live ranges of a program

into the available registers such that no register is assigned to any two variables that are

live simultaneously.

1

The interference graph of a program consists of a vertex for each variable and an edge

between any two vertices if and only if the two variables associated with the vertices can

be live simultaneously.

The problem of register allocation then can be described as the problem of �nding a

proper vertex coloring for the interference graph with no more than k colors, where k is

1

Chaitin points out that live ranges of variables that always contain the same value can be coalesced to one live range

so that they are later allocated to the same register. This avoids register copying by coalescing [6]. While coalescing is

neglected in the de�nition of proper register allocation for now, it will be addressed in the algorithm for register coloring

later on.

1



the number of available registers.

2

Unfortunately, it has been shown that there exists a corresponding program for any

possible interference graph. In particular, the interference graph may have a chromatic

number greater than k. If this is the case, the mapping from variables into registers

becomes a partial mapping.

Two solutions have been proposed to deal with unmapped variables. Let u1 and u2

be such variables with a con
icting live range and let there be an available register. Then

either u1 is mapped into main memory and will be accessed exclusively from there while

u2 is mapped into a register or the live range of both variables has to be modi�ed by

introducing spill code to alternately store u1 and u2 in main memorywhen required. The

former approach cannot be taken on load-store architectures (RISC) and may not result

in the best possible performance if u is frequently used since access to main memory is

considerably slower than access to registers. In the latter approach, u1 is spilled and u2

is loaded at de�nitions or uses of u2 and vice versa. The new live ranges of u1 and u2

will therefore alternate around the original con
icting live ranges.

2 NP-Completeness

Consider the general problem of graph colorability:

Problem 1 (Graph k-Colorability) Let G be a graph and let there be a set of k colors.

Is G k-colorable, i.e. is there a function f : V (G)! f1; :::; kg such that f(u) 6= f(v) for

uv�E(G)?

It has been shown by Karp [13] that this problem is NP-complete, i.e. solvable in

polynomial time by a nondeterministic one-tape Turing machine.

Theorem 1 (Karp) The problem of graph k-colorability is NP-complete.

The prove reduces the NP-complete problem of satis�ability

3

to satis�ability with at

most three literals per clause to the graph coloring problem as stated above.

Since only exponential-time algorithms are known to solve NP-complete problems

(unless the conjecture P = NP can be proven), greedy algorithms are commonly used

to produce suboptimal solutions (also see [11]).

2

A proper vertex coloring is de�ned such that no two adjacent vertices share the same color [8].

3

Let U be a set of variables and C be a collection of clauses over U . Is there a satisfying truth assignment for C?

2



3 Register Coloring

The principle behind register allocation by graph coloring is based on decomposing the

graph according to the following observation:

Theorem 2 (Chaitin) Let G be a graph and v�V (G) such that deg(v) < k. A graph G

is k-colorable if and only if G� v is k-colorable.

This result can be used to decompose a graph by repeatedly deleting vertices with

degree less than k until either the graph is empty or only vertices with degree greater

or equal to k are left. In the latter case, the graph cannot be colored. But for an

interference graph, by modifying the live range corresponding to one of the remaining

vertices, a new coloring attempt can be made. The register coloring algorithm suggested

by Chaitin works as follows:

1. Perform variable live-analysis, i.e. construct the interference graph.

2. For any two vertices of interference graph, coalesce the vertices corresponding to

the live ranges of variables if the variables contain the same value during these live

ranges.

3. For all vertices of the interference graph with degree less than k, delete such vertices

(and their edges) and push them onto a stack.

4. If the resulting graph is non-empty, split the live ranges of some variables by intro-

ducing spill code. Return to step 1.

5. For all vertices on the stack, pop one vertex at a time, add it back into the graph

(rebuilding the original edges), and color it such that non of the adjacent vertices

(up to this point) have the same color.

4 Clique Separators

To reduce the complexity of Chaitin's algorithm, it has been suggested to decompose

the interference graph using clique separators before any coloring attempt is made. A

clique separator is a complete subgraph whose removal disconnects the graph. The

following result, which has been rephrased in terms of graph coloring, is the base for the

decomposition step.

Theorem 3 (Tarjan [15]) Let G be a graph, C be a clique separator for G, and G

1

:::G

n

be the components of G � C. Then G is k-colorable if and only if the subgraphs G

i

+ C

(1 � i � n) are k-colorable.

3



Naively, a register coloring algorithm using clique separators would repeatedly split

the interference graph into smaller graphs G

i

+C until no more clique separators can be

found. It would then apply the above algorithm and possibly introduce spill code if any

of the decomposed graphs still were not k-colorable. But due to the decomposition using

clique separators, the subgraphs are more likely to be k-colorable such that less spill code

may be introduced. Furthermore, the analysis can be constrained to the subgraphs and

should therefore result in time and space savings.

Practically, choosing all clique separators makes register allocation too expensive.

Thus, the choice is restricted to the set of clique separators such that any variable live

range cannot occur more than c times within these separators. An algorithm for �nding

such a set for c = 2 is given in [12].

5 Vertex Ordering by Degree

Bernstein et al. suggested a vertex ordering for the deleting in step 3 of Chaitin's

algorithm [2]. They proposed to always delete a maximum degree vertex. This strategy

may succeed in coloring a graph or subgraph for some cases where an arbitrary choice of

a vertex for deletion, as proposed by might failed to allow such a coloring. Thus, costly

spill code can be avoided in these cases. The modi�cations to Chaitin's algorithm are:

4. For all vertices in the interference graph with degree less than k, choose one vertex

with maximum degree at a time, delete this vertex (and its edges), and it onto a

stack.

6 Delaying Spill Decisions

Briggs et al. [3] made a suggestion to improve on the choice of vertices by allowing

the deletion of vertices with degree greater than k which delays spill decisions. The

modi�cations to steps of Chaitin's algorithm are:

5. If the resulting graph is non-empty, choose a vertex for potential spilling and remove

it from the graph. Push it onto the stack. Return to step 3.

6. For all vertices on the stack, pop one vertex at a time, add it back into the graph

(rebuilding the original edges), and color it such that non of the adjacent vertices

(up to this point) have the same color. If a vertex cannot be colored, mark it.

7. For all marked vertices, split the live range of the corresponding variable and intro-

duce spill code. Return to step 1.

4



Delaying the spill decision allows vertices with more than k neighbors to be colored

if some of the neighbors have the same color and there is still a color not assigned to

any neighbor. For example, consider the cycle graph [8] with four vertices C

4

and k = 2

colors. Chaitin's algorithm cannot �nd vertices with degree less than k and therefore

introduces spill code. If the coloring of vertices was attempted with the above algorithm,

the �rst vertex is pushed in step 5, and all others in step 3 as before. When the vertices

are popped in step 6, a 2-coloring of C

4

is found and no spill code has to be introduced.

This method is guaranteed to �nd the same set or a subset of live ranges found by Chaitin

which will be spilled.

The reported savings for this method over Chaitin's approach were a reduction of

spilled registers by 51% and a reduction of the spill cost by 22% while the asymptotic

bounds for the algorithm remain unchanged. The heuristic function and the size of a

unit are the same as in Chaitin's approach.

7 Heuristics

Step 4 in Chaitin's algorithm and step 7 in Briggs' algorithm both split the live ranges of

some variables by introducing spill code. But the choice of a live range (i.e. the vertex)

to be spilled may result in di�erent costs in terms of execution time of a program.

Intuitively, one would want to spill a variable which is used very infrequently such that

expensive memory loads can be minimized. Several heuristics for making a \good" choice

of a vertex to be spilled have been proposed which result in near-optimal solutions. Such

heuristics are typically expressed in terms of the savings if a live range was allocated a

register. The live range with the smallest savings is chosen for spilling.

Some techniques are restricted to the scope of instructions, others to basic blocks. A

basic block is a sequence of straight-line code such that only the �rst instruction may be

the destination of a jump and only the last instruction may be a jump instruction.

7.1 Chaitin

The heuristic used by Chaitin et al. [7, 6] for a live range (vertex) is stated as follows:

save(v) =

N

X

i=1

(defs

i

+ uses

i

) � freq

i

where v is a vertex of the interference graph, N is the number of units within the live

range corresponding to v, defs and uses are the number of de�nitions and used in a

unit, and freq is the estimated execution frequency of a unit. The execution frequency

5



is typically calculated as

freq

i

= 10

nest

i

where nest is the loop nesting depth of the unit.

In their approach, a unit corresponds to a machine instruction. The graph coloring al-

gorithm is applied to global register allocation after local allocation (within basic blocks)

has taken place. Global allocation for a live range is therefore restricted to the registers

not already used for local allocation within all basic blocks of the live range.

7.2 Chow

Chow and Hennessy [9, 10] restricted their analysis to the unit of a basic block. Their

re�ned cost function is:

save(v) =

1

N

N

X

i=1

(loadsave � uses

i

+ storesave � defs

i

�movecost � n

i

) � freq

i

where loadsave/storesave are the savings due to a reference to / de�nition of a variable

in a register instead of memory,movecost is the cost of moving a value between a register

and memory, and n

i

�f0; 1; 2g is the number of loads and stores required to keep the value

in the register within a basic block which can be at most one load at the beginning and

one store at the end of a block. But a load can be avoided if the value is in the register

within all predecessor blocks, and a store can be avoided if the live range extends into all

successors of the current block. Furthermore, a load/store may not always be necessary

at the beginning/end of a live range.

The normalization by N re
ects that a register allocated over a long live range con-

sumes more register resources and should therefore be discouraged. The savings for a

vertex may be zero or negative using this heuristic indicating that register allocation

does not result in any savings at all and should be avoided for such a live range. Again,

local allocation precedes global allocation by coloring.

7.3 Gupta/So�a/Steele

The heuristic used by Gupta et al. [12] is similar to Chow's except that the savings are

not normalized, uses basic blocks as units as well, and can be stated as follows:

save(v) =

N

X

i=1

(loadsave � uses

i

+ storesave � defs

i

�movecost � n

i

) � freq

i

No distinction between local and global allocation is made, i.e. all registers are allocated

by graph coloring. The use of clique separators allows such an approach since it reduces

the analysis to much smaller subgraphs of the interference graph.

6



7.4 Best-of-Three

Bernstein et al. [2] used three heuristics and chose the best one of them to decide on

spills. All three functions save

1

; save

2

; save

3

are based on save

0

, a simpli�ed version of

Chaitin's heuristic.

save

0

(v) =

P

N

i=1

freq

i

deg(v)

save

1

(v) =

save

0

(v)

deg(v)

save

2

(v) =

save

0

(v)

P

N

i=1

lives

i

� 5

nest

i

save

3

(v) =

save

2

(v)

deg(v)

where lives is the number of live variables at the unit (instruction). save

1

increases the

likelihood of spilling a register (vertex) with high degree to increase the probability that

the graph becomes colorable afterwards. save

2

and save

3

are to spill registers which

have a long live range �rst.

7.5 Tile Trees: Hierarchical Graph Coloring

Callahan and Koblenz [5] suggested to decompose the graph to be colored by using a tree

of tiles. Tiles correspond to a part of a live range of a variable (basic blocks, conditionals,

or loops) and are either properly nested or pairwise disjoint. They are constructed using

interval analysis of the control 
ow [1]. Register coloring is performed on tiles inside-

out if tiles are nested or independently if tiles are disjoint. Tile graphs are typically

much smaller than interference graphs so that fewer vertices have to be analyzed during

coloring.

The heuristics to select spill candidates are somewhat more complex:

save(v) = local weight(v) +

P

s

reg(s)�mem(s)

local weight(v) =

P

b

p

b

� freq

b

reg(v) =

8

<

:

min(transfer(v); save(v)) if allocated to a register

0 otherwise

mem(v) =

8

<

:

0 if allocated to a register

transfer(v) otherwise

transfer(v) =

P

e

p

e

� live(v; e)

live(v; e) =

8

<

:

1 if the variable corresponding to v live along e

0 otherwise

where s are subtiles, b are basic blocks, e are entry or exit edges of a tile, p

i

is the

probability of a b being executed, and p

e

is the probability of following e. local weight

estimates the cost of allocating a register for the current tile while transfer estimates

the spill cost. A register will not be assigned if save(v) < 0 or save(v)+transfer(v)< 0,

7



i.e. if register allocation does not result in any savings (optionally considering the spill

cost).

8 Other Approaches

A recent e�ort by Proebsting and Fischer [14] returns to a register allocation scheme

which does not employ graph coloring. Rather, a probabilistic approach to register allo-

cation is taken. They suggest to perform local allocation by calculating the probability

p

i

that a variable is allocated to a register for each instruction and for each live variable

within a basic block given k registers.

save

i

= p

i

� freq

i

p

i

=

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

1 if variable loaded at instruction i

1 if variable stored at instruction i

1 if variable calculated at instruction i

1 if n � k

k=n if n > k

where n is the number of live variables besides (at most) one variable which is de�ned,

stored, or calculated at instruction i.

After local allocation, the savings heuristic for each unit (instruction) is used for

global register allocation. The global allocation is performed in an inside-out ordering

with respect of loop nestings, followed by register assignment which is done is reverse

order.

Delaying register assignment until after allocation enables the consideration of dif-

ferent assignment combinations and their savings. Graph coloring, on the other hand,

performs allocation and assignment at the same time. Nevertheless, the above heuris-

tics could also be used to determine the savings for making spill decisions during graph

coloring. The reported runtime behavior suggests though that the involved calculations

might be too ine�cient such that the heuristics had to be simpli�ed in order to make

this approach competitive with other schemes.

Acknowledgements

Thanks to Preston Briggs who pointed out several problems in this survey which have

been addressed in the �rst revision. In a personal communication, he suggested to

use Chaitin's overall framework modi�ed according to Briggs' delayed spill decisions,

Bernstein's vertex ordering by degree, and Briggs' rematerialization [4].

8



References

[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers { Principles, Techniques, and

Tools. Addision-Wesley, 1986.

[2] David Bernstein, Martin C. Golumbic, Yishay Mansour, and Ron Y. Pinter. Spill

code minimization techniques for optimizing compilers. In Proceedings of the ACM

SIGPLAN Conference on Programming Language Design and Implementation, vol-

ume 24, pages 258{263, June 1989.

[3] Preston Briggs, Keith D. Cooper, Ken Kennedy, and Linda Torczon. Coloring

heuristics for register allocation. In Proceedings of the ACM SIGPLAN Conference

on Programming Language Design and Implementation, volume 24, pages 275{284,

June 1989.

[4] Preston Briggs, Keith D. Cooper, and Linda Torczon. Rematerialization. In Pro-

ceedings of the ACM SIGPLAN Conference on Programming Language Design and

Implementation, volume 27, pages 311{321, June 1992.

[5] David Callahan and Brian Koblenz. Register allocation via hierarchical graph col-

oring. In Proceedings of the ACM SIGPLAN Conference on Programming Language

Design and Implementation, volume 26, pages 192{203, June 1991.

[6] Gregory J. Chaitin. Register allocation & spilling via graph coloring. In Proceedings

of the ACM SIGPLAN Conference on Programming Language Design and Imple-

mentation, volume 17, pages 98{105, 1982.

[7] Gregory J. Chaitin, Marc A. Auslander, Ashok K. Chandra, John Cocke, Martin E.

Hopkins, and Peter W. Markstein. Register allocation via coloring. Computer

Languages, 6:47{57, 1981.

[8] G. Chartrand and L. Lesniak. Graphs & Digraphs. Wadsworth & Brooks, 2nd

edition, 1986.

[9] Frederick Chow and John Hennessy. Register allocation by priority-based coloring.

In Proceedings of the ACM SIGPLAN Conference on Programming Language Design

and Implementation, volume 19, pages 222{232, June 1984.

[10] Frederick Chow and John Hennessy. The priority-based coloring approach to register

allocation. ACM Transactions on Programming Languages and Systems, 12(4):501{

536, October 1990.

9



[11] Michael R. Garey and David S. Johnson. Computers and Intractability { A Guide

to the Theory of NP-Completeness. W. H. Freeman & Co., 1979.

[12] Rajiv Gupta, Mary L. So�a, and Tim Steele. Register allocation via clique separa-

tors. In Proceedings of the ACM SIGPLAN Conference on Programming Language

Design and Implementation, volume 24, pages 264{274, July 1989.

[13] Richard M. Karp. Reducibility among combinatorial problems. In Raymond E.

Miller and James W. Thatcher, editors, Complexity of Computer Computations,

pages 85{103. Plenum Press, 1972.

[14] Todd A. Proebsting and Charles N. Fischer. Probabilistic register allocation. In

Proceedings of the ACM SIGPLAN Conference on Programming Language Design

and Implementation, volume 27, pages 300{310, June 1992.

[15] Robert E. Tarjan. Decomposition by clique separators. Discrete Mathematics,

55:221{232, 1985.

10


